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THE STRUCTURE OF SKEW PRODUCTS WITH 
ERGODIC GROUP AUTOMORPHISMS 

BY  

D. A. LIND 

ABSTRACT 

We prove that ergodic automorphisms of compact groups are Bernoulli shifts, 
and that skew products with such automorphisms are isomorphic to direct 
products. We give a simple geometric demonstration of Yuzvinskii's basic result 
in the calculation of entropy for group automorphisms, and show that the set of 
possible values for entropy is one of two alternatives, depending on the answer 
to an open problem in algebraic number theory. We also classify those algebraic 
factors of a group automorphism that are complemented. 

1. Introduction 

Over thirty years ago Halmos [11] noticed that continuous algebraic au- 

tomorphisms of compact groups preserve Haar measure. Therefore they provide 

examples in ergodic theory which can be analysed in considerable detail because 

of the great amount of additional structure. For example, he showed that for 

compact abelian groups, ergodic automorphisms are also mixing. In 1964, Rohlin 

[31] strengthened this by showing that ergodic automorphisms of compact 

abelian groups are Kolmogorov automorphisms, that is, they obey a probabilistic 
zero-one law. Using ideas introduced by Ornstein together with some diophan- 

tine approximation arguments, in 1971 Katznelson [13] showed that ergodic 

automorphisms of finite dimensional tori are isomorphic to Bernoulli shifts, 
which is the strongest possible kind of mixing condition. A year later this result 

was extended to the infinite torus independently by the author [18], Chu [8], and 

Aoki and Totoki [2]. In fact, the algebraic techniques in [18] were strong enough 

to treat all ergodic automorphisms of compact abelian groups except those that 

we have dubbed "irreducible solenoidal automorphisms" in w One of our 

principle results, the Automorphism Theorem, is a proof that ergodic au- 

tomorphisms of compact abelian groups are isomorphic to Bernoulli shifts. This 

result may be thought of as characterizing those measure-preserving transforma- 

tions that can be given a compact abelian group automorphism structure. 
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Skew product transformations were introduced by Anzai [1] to obtain 

certain counterexamples in ergodic theory. Such transformations, with a possibly 

nontrivial automorphism part, arise naturally in the study of automorphisms of 

nilmanifolds (see [29]). Our second main result, the Splitting Theorem, is that 

skew products with ergodic group automorphisms split into direct products, so 

that for ergodic automorphisms there is only one kind of skew product. This no 

longer holds for nonergodic automorphisms. The splitting can be obtained 

directly in certain cases by solving a related functional equation (e.g. the second 

proof of Theorem 3.1). Our approach here, however, is to prove both the 

Automorphism and Splitting Theorems at one stroke by showing that skew 

products with ergodic group automorphisms are Bernoulli modulo the base 

factor (see w for definitions). The latter result is called the Skew Product 

Theorem, and its proof makes essential use of the recent results of Thouvenot on 

relative ergodic theory. 

There are some by-products and applications of our analysis. In w we give a 

simple geometric derivation of Yuzvinskii's formula for the entropy of an 

irreducible solenoidal automorphism, the central result in his computation [40] of 

the entropy of group automorphisms. We also show there that the set of possible 

values for the entropy of a group automorphism is either countable or all of 

[0, o0], depending on the answer to a problem in algebraic number theory that has 

been open for over forty years. In w we classify those algebraic factors of a 
group automorphism that split off with a Bernoulli complement. We make no 

use here of Rohlin's result that ergodic group automorphisms are Kolmogorov, 
so that along the way we have supplied an independent proof of this fact. 

Recently and independently, G. Miles and R. K. Thomas have proved the 
Automorphism Theorem for general compact groups. In [21] they reduce the 

problem to the solenoid case. They then apply some recent and difficult results in 

simultaneous diophantine approximation due to Schmidt to establish some facts 

in [22], which, together with a Markov structure developed in their first paper, 

are used to dispose of the solenoid case in [23]. Our proofs are for abelian 

groups, but by using part of the known structure of general group automor- 

phisms (see [21] or [41]), they extend easily to nonabelian groups. Roughly, the 

only ergodic automorphisms of nonabelian compact groups are shifts on a 

doubly infinite product of a nonabelian compact group, and these pose no 

problem. In particular, there are no ergodic automorphisms of a compact 

nonabelian Lie group [33]. Our proof of the solenoid case is somewhat shorter 

than [22] and [23], and avoids entirely any but the simplest number theory. 

In his thesis, Marcuard [20] provei the Splitting Theorem for automorphisms 
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of finite dimensional tori by using Thouvenot's relative ergodic theory combined 

with the observation that Katznelson's proof in [13] is in a sense translation 

invariant. In w as preparation for the irreducible solenoid case, we give an 

alternate proof of Marcuard's result which avoids his use of diophantine 

approximation. In another paper we will solve directly for toral automorphisms 

the related functional equation mentioned previously, which therefore gives a 

third proof of the Splitting Theorem for finite dimensional tori. 

In w we sketch some necessary background material, including the relevant 

parts of Thouvenot's relative ergodic theory. Then in w we give a brief account 

of our results in the special case of a group shift, where the relative results are 

probably the clearest. As motivation for the ditficult solenoid case, we present in 

w a new proof that ergodic automorphisms of finite dimensional tori are 

Bernoulli. In w we treat irreducible solenoidal automorphisms by using the 

ideas of the previous section together with a kind of independence on a totally 

disconnected subgroup. Totally disconnected groups are handled in w and in w 

these results are assembled to yield a proof for general groups. Applications 

mentioned above are in w and w 

2. Preliminaries and statement o! results 

We collect here some terminology and basic results from ergodic theory, and 

formulate our basic results. 

A Lebesgue space is a measure space consisting of a (possibly empty) 

continuous part that is isomorphic to the unit interval with Lebesgue measure, 

and a (possible empty) discrete part consisting of at most a countable number of 

atoms, together normalized to have measure 1. An invertible measure- 

preserving transformation between two Lebesgue spaces will be called simply a 

map. Two maps, U from X to itself and U' from X' to itself are isomorphic if 

there is a map W: X---~X' such that W U  = U'W. 

If {~i : i E I} is a collection of ~r-subalgebras of a Lebesgue space, then V ,~,~, 

denotes the smallest complete tr-subalgebra containing every ~t,. The collection 

{~/, : i E I} is independent if any finite subcollection is independent in the usual 

probabilistic sense. If U is a map of the Lebesgue space (X, A c, v) to itself, a 

tr-subalgebra ~ /o f  N that is invariant under U is called a factor of U. A factor 

of U is Bernoulli if there is a tr-subalgebra ~ of ~ such that { U ~  : i E Z} is 

independent and VT= U '~  = ~. The map U itself is a Bernoulli map if 3 r is a 

Bernoulli factor. 

We shall need relative versions of Ornstein's Factor and Monotone Theorems 
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for Bernoulli factors ([25] and [24]). These versions were originally established 

by Thouvenot [36] for finite entropy factors only. The modifications necessary to 

extend his work to factors if infinite entropy are given in the Appendix. 

Let ~ be a factor of a map U. A factor ~ is Bernoulli mod ~ if there is a 

Bernoulli factor ~ that is independent of ~ and such that ~ v ~ -- ~ v ~. U is 

a Bernoulli map rood ~ if N is Bernoulli mod ~. Letting ~ be the trivial 

cr-subalgebra corresponds to the absolute case. 

RELATIVE FACTOR THEOREM. Factors of Bernoulli maps rood ~ are Bernoulli 

rood ~. 

RELATIVE MONOTONE THEOREM. I f  {M~: i =  1 ,2 , ' ' ' }  is an increasing se- 

quence of Bernoulli factors mod ~, then V *~ M~ is also a Bernoulli factor rood ~. 

We remark that it follows from the definition that if M1 C M2 C M3, and M2 is 

Bernoulli mod M1, M3 is Bernoulli mod M2, then .d3 is Bernoulli mod M1. 

Finite, ordered, measurable partitions of a Lebesgue space will be denoted by 

Greek letters a,/3,. �9 with possible embellishments. If {a, : m =< i _-< n} is a finite 

sequence of partitions, then V:,a, denotes the common refinement of these 

partitions ordered lexicographically. Identifying a partition with the o--algebra it 

generates, the symbol V ~E~a~ over an infinite index set I is interpreted to be the 

smallest complete cr-subalgebra containing every a,  The entropy of a is denoted 

by h(a), and if U is a map, the entropy of U on a is denoted by h(U, a). The 

entropy of U is then h (U) = sup, h (U, a),  where the supremum is taken over all 

finite partitions a. 
Let G be a separable compact group, which we will write additively. Then G 

together with the completion ~ of the Borel g-algebra and Haar measure p. 

forms a Lebesgue space. A continuous algebraic automorphism of G, which we 

hereafter call simply an automorphism, preserves/z. As mentioned in w our 

first main result is the following. 

AUTOMORPHISM THEOREM. An ergodic automorphism of a compact abelian 

group is isomorphic to a Bernoulli map. 

If (X, A r, v) is a Lebesgue space, then X x G together with product measure 

v ( ~ #  on the completed product g-algebra .At (~./,( is again a Lebesgue space. 

Let U be an ergodic map of X, S an automorphism of G, and ~b: X---* G 

measurable. Define a map V = U x , S  by V(x, g) = (Ux, Sg + ~b(x)). V is called 

the skew product of U with S with skewing function (~. If ~b(x) is always the 

identity of G, then U x , S  is just the direct product U x S. The g-algebra .Y" is 
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identified with 2r x G in N Q./,/, and is called the base/actor of V. The addition 

formula ([41], [34]) for the entropy of a skew product is h ( U •  

h(U)+h(S) .  
A skew product U• splits if there is an isomorphism of it to the direct 

product U x S which is the identity on the base factor N, i.e. a map W from 

X x G to itself such that W ( U x , S )  = (U • S)W, and W(x, g) = (x, Wxg), where 

Wx is a map of G for every x E X. Our second main result is formulated as 

follows. 

SPLITTING THEOREM. Skew products with ergodic automorphisms of compact 

abelian groups split. 

We will prove here both the Automorphism and Splitting Theorems at one 

blow by showing the following. 

SKEW PRODUCT THEOREM. Skew products with ergodic automorphisms of 
compact abelian groups are Bernoulli mod the base factor. 

The Automorphism Theorem follows by taking X to have one point. To 

obtain the Splitting Theorem, observe that if U x , S  is Bernoulli mod A c, then it 

is isomorphic to the direct product of U with a Bernoulli map S' which has, by 

the addition formula, the same entropy as S. Since S is also Bernoulli, S is 

isomorphic to S'. Then U • 2 1 5  '= U•  where both isomorphisms 

preserve the base factor. 

If H is a closed subgroup of G that is invariant under S, we denote by SH the 

restriction of S to H, and by S~/, the factor automorphism of S on G/H. If 

~ ( H )  is the or-subalgebra of those sets in ~ that are unions of cosets of H, then 

~ ( H )  is a translation invariant factor of S. Hence 2 (@d/ (H)  is a factor of 

V = U x , S  and can be identified with the skew product V/H = Ux~So/,,  
where ~ is the image of 4) under the quotient map ,r: G ~ G/H. 

We can regard V as a skew product of V/H  with Sn in the following way. Let 

qJ: G/H---~ G be a Borel cross section to ,r (see [5; IX, 6.8]), so that zrq, is the 

identity on G/H. Identify X x G  with X x ( G / H ) •  via (x,g),,-~ 
(x, ,rg, g - ~Ozrg). Then it is simple to check that 

V(x,  g )  = S . ( g  - + O(x,  rg)) 

where 

= ( V / H x , S . ) ( x ,   rg, g - q,.rg), 

e(x, ) = 4,(x ) + sq, g - q, r( Sg + 4,(x )). 

Thus V is the skew product of V/H with St, with skewing function O. 
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3. Group shifts 

There is one kind of ergodic group automorphism, a group shift, which is 

clearly a Bernoulli map, and for which the proof of the Splitting and Skew 

Product Theorems is particularly simple. We treat this case both as motivation 

for what follows, and because the results are used when dealing with totally 

disconnected and nonabelian groups. It is here that an idea suggested by B. 

Weiss in w of his survey [38] meets with complete success. 

Let {G~} be a doubly infinite sequence of copies of some separable compact 

group Go. The product group G = II7~ G~ is again separable. The group shift on 
Go is the shift automorphism S of G defined by S( . . . ,g_l ,  go, g l , . . . )=  
(" �9 ", go, gz, g2," �9 "). Let 7r0: G ~ Go be the projection onto the 0th coordinate. 

The cr-subalgebra G = zrffl(~0) has {S'G: i E Z} independent since Haar meas- 

ure on G is product measure, and VT| = ,/~ because the cylinder sets of ,~ 

are in this span. Then S is a Bernoulli map with independent generator G. 

THEOREM 3.1. The Splitting and Skew Product Theorems hold for group shifts. 

PROOF. We give two proofs. The first uses the observation that the time zero 

cr-subalgebra of a group shift moves independently under the shift in a 

translation invariant way to yield a Bernoulli complement to the base factor. 

This proves the Skew Product Theorem, from which the Splitting Theorem 

follows. This kind of translation invariant independence is a simple form of the 

relative very weak Bernoulli criterion we will establish later for other groups. 

The second proof splits the skew product directly, producing the required 

isomorphism by solving a related functional equation. Since group shifts are 

Bernoulli, the Splitting Theorem immediately implies the Skew Product 

Theorem. 

To begin the first proof, let U be an ergodic map of (X, N, v), S be the group 

shift on Go, and V = Ux,S .  Let Go = zrol(~o) be the time zero tr-subalgebra for 

S, and 7rx and zrQ be the coordinate projections of X x G onto X and G. We 

will show that if G = 1rb~(Go), then {V*G : i E Z} are independent and together 

with N generate X @./,f, which will prove the Skew Product Theorem. 

First note that iterates of V have the form W (x, g) = ( U'x, S~g + $~(x )), i E Z, 
where $~(x)= ~b(x), ~b2(x) = S$(x)+ $(Ux) ,  and so on. An atom in V"_,W~ 

has the form 

A = h V'zrbl(E,), E, E Go. 
- n  

Then, since Haar measure is translation invariant and on G is product measure, 

we have for every x that 
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g ( A  N 7rx~(X)) = / z [  I'~_, (S'E~ + ~b~(x)) ] 

= /x,(S E, + f , (x))  
--rl 

= 

--rl 

= [-I (vNIz)(Trb'E,). 
- n  

Since the answer is independent of x, we simultaneously conclude that { V ' ~  : i E 

Z} is independent and has span independent of 2(. 

To prove that ~ together with f f  generate W @ ~ ,  note that S ' ~  + g = S ' ~  

for any g E G. Hence for every x we have 

~r~(V_~ V'~ I~rxl(X))= ~/ (S'~ + O,(x))= 

and since W separates the points of X, W v VT~ V ~  = W@./,t. 

For the second proof, due to Miles and Thomas [21], we will produce an 

isomorphism W of Ux,S  with U • S of the form W(x, g) = (x, g + f(x)), where 

f: X ~  G is measurable. The relation W(U• = (U x S)W is equivalent to 

the functional equation 

(3.1) 4,(x) = Sf(x)- f(Ux), 

where ~b, S, and U are known and it required to find a measurable solution 

f: X--~G. We shall solve (3.1) when S is a group shift. 

Since ~b(x)E G = IIT| ~b(x) = ( . . . ,  ~b_l(x), ~b0(x), 4,1(x)," "). Writing 

/ (x )  = ( . . . , f -~(x) , [o(x) , f~(x) , . . . ) ,  then (3 .1)becomes 

(3.2) 6 , (x)  = f , (Ux) .  

We simply put f0(x) -= 0 in Go, and use (3.2) to find the other fj inductively. Thus 

f~(x) = ~bo(X), f2(x)= 6o(Ux)+ 6~(x), and in general 

t ~ '  d~,(Uk-'-'x) (k >-_ 1) j = O  

f~(x) = 
~, r (k <= - 1) 
j z k  

We have therefore produced an explicit isomorphism between Ux,S  and 

U • S which preserves the base factor. Such an isomorphism is not unique, for 

we could have started with an arbitrary fo(x) in the above. Also, by solving the 
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functional equation (3.1) directly, we have produced a factor complementary to 

X which is invariant under the natural action of G on X x G. Indeed, the 

existence of such a factor is equivalent to solving (3.1). Our proof for general 

group automorphisms of the existence of Bernoulli complements in the Skew 

Product Theorem uses relative ergodic theory, and does not allow us to conclude 

that they are invariant under G. 

Our calculation in the first proof that shows independence of {V'~} is 

essentially the observation that since {S~o} is independent and each term is 

translation invariant, for any sequence of elements g, E G we have {S'~o + g~} is 

independent. A weaker form of such translation invariant independence is a key 

element later on. Unfortunately, this stronger situation occurs only for group 

shifts. 

THEOREM 3.2. Suppose that S is an automorphism o[ a compact abelian group 

G, and that ~ is a translation invariant tr-subalgebra of de such that { S ~  : i E Z} 

is independent and generates tilt. Then there is an algebraic isomorphism of S with 

a group shift that carries ~ to the time zero cr-subalgebra. 

PROOF. Since ~ is translation invariant, there is a closed subgroup H of G 

such that ~ = ~ ( H )  (see [17]). Define p : G ~ I I T |  by p ( g ) =  

{S~g + H : i E Z } .  Then p is clearly a continuous algebraic homomorphism 

compatible with S and the group shift on G/H. Since VT| = d,f, it follows 

that A~-| is trivial, which implies that t9 is injective. To show that p is 

surjective, let {K,} be a sequence of compact subsets of G with positive Haar 

measure that decrease to the identity. For any elements g, E G, since g, + K, + 

H E ~, the independence of { S ~ }  shows that for each n and m 

Let n -~ oo, and noting that all sets involved are compact and decreasing in n, we 

have that for every m, 

S-'(g, + H ) ~ O .  

Again using compactness, letting m-~  0o yields 

S-'(g, + H ) ~ O .  
- |  

Any element g in this intersection has p(g) = {g~ + H}, which proves that p is 

surjective. We have defined H so that ~ = ~ ( H ) ,  and hence p ( ~ )  is the time 

zero cr-subalgebra of the group shift on G / H .  
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4. Finite dimensional tori 

We prove here our basic results for automorphisms of finite dimensional toil. 

The major stumbling block to extending the geometric ideas of Ornstein and 

Weiss [39] from tori of dimension two to those of higher dimensions has been 

handling those automorphisms in whose Jordan form the blocks corresponding 

to eigenvalues of modulus one contain off-diagonal ones. This difficulty is 

overcome in previous proofs ([13], [23]) by invoking some diophantine approxi- 

mation arguments. However, here we decompose the automorphism into a 

succession of skew products with automorphisms whose characteristic polyno- 

mial is irreducible. We then prove the Skew Product Theorem for such automor- 

phisms by using a translation invailant version of the Ornstein-Weiss technique 

to establish a criterion which Thouvenot proved was sufficient for relative 

Bernoullicity. 

Strictly speaking, this proof is a special case of that in the next section. We 

have given it separately here both because it provides a new proof of the 

Automorphism Theorem for finite dimensional tori, and also because certain 

geometric ideas, which may be lost in the more complicated situation later, stand 

out clearest for toil. 

Let us first introduce some notation and terminology. T d denotes the 

d-dimensional torus Rd/Z d, whose dual group is Z ~ under the usual pairing. 

Maps will act on the left, so that elements of R ~, T d, and Z d are columns, even 

though we will usually write then as rows for typographical simplicity. 

An automorphism S of T d comes from a linear isomorphism S of R d for which 

SZ d = Z d. This amounts to requiring that the matrix of S have integral entries 

and determinant _+ 1. The matrix of the dual automorphism T of Z d is then the 

transpose of the matrix of S. 

It is easy to show that an automorphism S of a compact abelian group is 

ergodic if and only if its dual automorphism T is aperiodic, that is, the only 

element of the dual group periodic under T is the identity. For toral automor- 

phisms, this is equivalent to requiring that the matrix of S have no roots of unity 
as eigenvalues. 

In order to apply some results from linear algebra, we embed the dual group 

Z d into the d-dimensional rationals Q~ in the obvious way. The automorphism T 

extends to a rational vector space isomorphism of Qd that we also call T. A 

coordinate-free approach, used in the next section, replaces Qa with the tensor 

product of Z ~ with Q, but our ad hoc embedding, used also with the infinite torus 
in [18], is more direct and explicit. 
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As a linear map of Q~, T has characteristic polynomial q ( x )  which is monic, 

with integral coefficients, and constant term --*-1. We will abbreviate these 

conditions on a polynomial q ( x )  by saying that q ( x )  is unimodular. Let the 

irreducible factorization of q (x) in Q[x ] be q (x) = II~q~ (x)e'. By Gauss's Lemma, 

we can assume that each q~ (x) is monic with integral coefficients, and it follows 

that each is unimodular since their product is. 

The primary decomposition for linear operators [12, p. 180] says that if V, is 

the kernel of q,(T)',, then Qd=  @~V~" This comes from considering Qd as a 

Q[x ]-module, where Q[x] is a principle ideal domain, and applying the structure 

theorem for modules over such domains. If we now apply the rational canonical 

form [12, p. 196], each V~ splits into a direct sum of cyclic subspaces for T, where 

on each cyclic subspace the minimal polynomial, which coincides with charac- 

teristic polynomial, must be a power of q,(x) .  Thus we can write Qd = ( ~  W,, 

where each Wj is a T-invariant cyclic subspace on which the minimal polynomial 

of T is the power of some irreducible polynomial pj (x) (each pj (x) is one of the 

q, (x)  appearing in the factorization of q(x) ) .  

Let wj be a cyclic vector for Wj under T. Since any power of pj(x)  is 

unimodular, the subgroup At of VCj generated by the powers of T on wj is just 

the group generated by {T~wj: 0 <= k <-_ dim W~-I}; that is, Aj is a lattice in Wj 

whose rank is dim Wj. By replacing each wj with an appropriate rational multiple 

if necessary, we can assume that Z '~ COjAj = A. Since Z d has full rank in Q~, the 

quotient A/Z d is finite. 

Let G be the dual of A. The dual of the inclusion of Z d CA is a quotient 

homomorphism zr: G---*T ~ with finite kernel. The automorphism TA of A has 

dual an automorphism S of G which commutes with zr. If Gj is the dual of Aj, 

then G = FIj Gj, and S on the factor G, has dual automorphism TAj which has a 

cyclic vector with minimal polynomial the power of an irreducible polynomial. 

We claim that to prove the Skew Product Theorem for S, it suffices to prove it 

for S. For if U x , S  is a skew product, let ~: X ~  G be any measurable function 

with 7rt~ = ~b. Then U x , S  is isomorphic to the factor )r zr) of Ux,~S, 

and by the Relative Factor Theorem, knowing the Skew Product Theorem for 

would give it also for S. 
Also, from w we have that a skew product with S is a finite sequence of skew 

products with Sq. 
Thus we are reduced to the case when (simplifying notation) the dual 

automorphism T of S has cyclic vector w which generates all of the dual group 
A, such that the minimal polynomial of T is the power p ( x )  e of an irreducible 

p ( x )  = x'* + ad-~x "-1 + �9 " �9 + ao. With respect to the basis {w, T w , . . . ,  T" - tw ,  
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p(T)w, p(T)Tw,"  ", p(T)rd-~w, ' '  ", p(Tf- lw,  P ( T f - ' T w , " . ,  P(T)'-ITe-'w} 
the matrix of T is 

1 

1 .  

where there are e co 91es of 

C ( p )  = 

1 

- -  a o  
0 

- a l  
1 0 

- -  a 2  
1 0 

1 - -  a a - 1  

the companion matrix to p(x). 
With respect to this basis, the dual of A splits as T~x . . .  • T~. Because 

p(T)JA is T-invariant, T is well defined on the quotient A/p(T)JA, whose dual 

T~ • . . .  x T~ is therefore invariant under S (1 _-< j _-< e). If C(p) '  is the transpose 
of C(p),  then matrix of S on T~x T a~ is 

and is a skew product of C(p) '  with C(p)' .  Explicitly, if (t (1), t(2))E T f x  T~, then 

S(t(1),t(2)) = (St(1),Stt2)+t~l)). Continuing in this fashion, we see that a skew 

product with S is built up as a finite sequence of skew products with C(p)' .  

Thus the Skew Product Theorem, and consequently the Automorphism and 

Splitting Theorems, are implied by the following. 

THEOREM 4.1. The Skew Product Theorem holds for ergodic toral automor- 
phisms whose matrix is the transpose of the companion matrix of an irreducible 
polynomial. 
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Before launching into the proof, we first describe the relative version of very 

weak Bernoullicity due to Thouvenot, and prove some preliminary results 

needed to implement this criterion. 

We begin with some notation. If a = {A1, A 2 , "  "} is a partition of (X, v), the 

distribution o[ a is the vector d ( a ) =  (v(A1), v(A2),. . .) .  If v ( E ) > 0 ,  the 

restriction of a to E is a I E = {A1 tq E, A2 N E, .  �9 .}. A property is said to hold 

for e-almost every atom of a if the union of the atoms of o~ for which it holds has 

measure greater than 1 - e .  The partition distance between two partitions 

a = { A 1 ,  A2, . . .}  and /3={B1, B 2 , ' " }  of the same space is d ( a , / 3 ) =  

E, v(A, A B,). If {a, }7 and {/3, }7 are sequences of partitions of (X, vx) and (Y, vy), 

respectively, then define 

. . i x ; ,  d[{a,}l,{/3,}l]- = inf z.., d(~ba,, [3,), 
r n i f f i f  

where the infimum is taken over all maps ~: X--> Y. A sequence of partitions 

{ai: i E Z} of a measure space is called very weak Bernoulli if for every e > 0 

there is a k > 0 and an n > k/e such that for all m > O, we have for e-almost 

V-,.-kai that every atom A • -k 

d[{a, I A }~, {a, }~'1 < e. 

If V is a map, then a partition a is called very weak Bernoulli [or V if the 

sequence { V-'a : i E Z} is very weak Bernoulli. 

The importance of this notion is that it gives a condition that can be checked in 

specific cases, and that if a is very weak Bernoulli for V, then VT~ V-~a is a 

Bernoulli factor of V. 

Thouvenot 's relative version of very weak Bernoulli [37] in the context of 

skew products takes the following form, which is easily shown equivalent to his 

original formulation. 

Let U be an ergodic map of (X,N, v), S be an automorphism of (T d, d~, it), 

and V = U x , S  be a skew product of U with S. Denote the projections of 

X x T d onto X and T ~ by 7rx and zru, respectively. Recall that we identify ,A r with 

zrxl(N), so that ,A r is a factor of V. For x E X, the fiber zrx~(x) = {x} x T ~ carries 

a natural measure structure, and if a is a partition of X x T ~, then a [ ~rx~(x) is 

defined for almost every x. Such a partition a is called very weak Bernoulli mod 

,Arfor V if the sequence {V-'a [ r is very weak Bernoulli for almost every 

x*. By relativising the absolute proof, Thouvenot [36, lemme 6] shows that if a is 

very weak Bernoulli mod N for V, then V_'| V-~a is Bernoulli mod ,hr. 

�9 The lack of stationarity of this sequence is the reason for our introducing above the notion of a 
very weak Bernoulli sequence of partitions. 
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A partition ot of T d is smooth if the atoms of ot have piecewise smooth 

boundaries. We will show that the relative very weak Bernoulli criterion holds 

for partitions of the form oral(a), where a is a smooth partition of T d. This will 

prove Theorem 4.1, for by taking an increasing sequence {aj} of smooth 

partitions of T ~ for which VT aj =.,/~, we will have an increasing sequence of 

factors ~j  of V that are Bernoulli mod N, and such that 3c v s/s increases to 

N ( ~ .  The Relative Monotone Theorem then implies Theorem 4.1. If S is 

hyperbolic, it is easy to produce a smooth generator, and use of the Relative 

Monotone Theorem could be avoided. However,  for nonhyperbolic automor- 

phisms it seems more difficult to produce smooth generators. 
Let V = U x , S ,  and recall that the functions ~b,: X---, T ~ were defined in w by 

V'(x, t )= (U'x, S't + O,(x)). If a is a smooth partition of T ~, then restricted to 

the fiber zr x~(x) the sequence of partitions { V-'trOt(a)} is {S-'a - S-'~b, (x)}, as a 

straightforward computation shows. We can therefore complete the proof by 

showing that for any sequence {t,} in T d, {S-'a + t,} is very weak Bernoulli. 

To prove the very weak Bernoulli criterion, we use the following elementary 

result of Ornstein and Weiss [39, lemma 1.3]. If {a,}7 is a sequence of partitions 

of (X, Vx), where a, = {A,1,A,2," "}, define the {a,}~-name of x E X to be 

{a,(x)}7, where x ~ A,o~x). Let {/3,}7 be a similar sequence on (Y, vy), with 

{/3, }7-names {b, (y)}L An e-map O: X---, Y is a transformation such that there is a 

set X o C X  with vx(Xo)> 1 -  e, and for any set E CXo we have 

I 11 < 

Let 8(0)=  1 and 8 ( k ) = 0  for k ~ 0 .  

LEMMA 4.2. With the notation above, if there is an e-map 0: X ---, Y and a set 
E C X  with v x ( E ) <  e and 

1~.~ 8(a,(x)-b,(l~x))<e (xEX\E),  hi-1 
then 

d[{a,}~', {/3,}7] < 16e. 

Our application of this result to prove Theorem 4.1 is a translation invariant 

analogue of the Ornstein-Weiss technique, except that we prove certain uniform 

distribution statements directly rather than appeal to Rohlin's result, as is done 

in [39]. Given a smooth partition a of T a and e > 0, we will introduce an 

auxiliary partition /3 = {Cj} of T ~ into "mapping boxes".  There will exist a k 

depending on a and e such that for every m > 0, most atoms of V--L_E(S-Ja + t,) 

will be nearly uniformly distributed in each of the Cj, and will consist mostly of 
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"sheets"  in the unstable direction. This will allow us to define an e-map from 

most atoms A to T '~ by defining it "locally" from each A fq C~ to Cj. This local 

mapping has the property that a point and its image are close and their difference 

is in the stable direction. Hence the forward iterates of a point and its image 

remain close forever, and smoothness of a guarantees that their {S-'a}-names 

agree most of the time. An application of Lemma 4.2 then proves the required d 

closeness for very weak Bernoulli. 

We shall now describe some of the geometry of toral automorphisms. The 

higher dimensional case differs in two respects from the two-dimensional case. 

The first is that the eigenvalues of ergodic automorphisms o f T  2 must be real, so 

that the eigenspaces are always one-dimensional. In general, the presence of 

complex eigenvalues and hence two-dimensional eigenspaces means that slightly 

more care is needed when using Weyrs  Theorem to obtain uniform distribution. 

The second is the possible presence of eigenvalues of modulus 1. Since we are 

assuming that the characteristic polynomial is irreducible, these eigenvalues are 

nonrepeated,  and make no difference in the proof. If, however, we tried to apply 

this proof to the repeated eigenvalue case, then polynomial growth in the stable 

direction caused by off-diagonal ones in the Jordan form would necessitate some 

delicate control over the rate of uniform distribution in Weyl's Theorem. This is 

in fact the approach of Miles and Thomas ([22], [23]). 

We will assume for the remainder of this section that S is an ergodic auto- 

morphism of T d whose matrix is the transpose of the companion matrix of an 

irreducible polynomial. If ~ :  R d ~ T d is the natural quotient map, then there is, 

as mentioned before, a linear isomorphism S of R d such that qb~ = S ~ ,  and 

whose matrix is that of S. For each eigenvalue ,t of S, let W~ be the eigenspace 

corresponding to A and ~. Then dim W~ is 1 or 2 depending on whether A is real 

or not. In order  to avoid repetitions, we make the convention that sums and 

products indexed by the eigenvalues A are over only those A whose imaginary 

part is nonnegative. 

There is a metric on each W~ for which S multiplies distances by I A I, and we 

give R d = ~)~ W~ the metric that is the supremum over the W~ metrics. This 

metric is translation invariant, and hence projects under qb to one on T a. 

Distances in R ~ and T d will be with respect to these metrics. Also, there are 

Haar  measures to and to~ on the groups R ~ and W~ such that to = II~ to~, and such 

that locally qbto = tz. 

The subspaces W s =  ~)r~s~ W~ and W u =  E])r~l>~ WA are called the weakly 
stable and the unstable subspaces of S, respectively. The images under qb of the 

cosets of W s and the cosets of W ~ form the weakly stable and unstable foliations 
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of T ~. A key element in our proof is the unique ergodicity of the unstable 

foliation in the sense of Bowen and Marcus [7]. Here this amounts to showing 

that if D is Jordan measurable in T ~, then for any large enough ball B in W u the 

projection under �9 of normalized Lebesgue measure on B is nearly uniformly 

distributed in D. The Bowen-Marcus definition of unique ergodicity of foliations 

can be easily checked in our case, because the leaves of the unstable foliation are 

the orbits of the natural action of W" on T d via translation, and the only 

normalized Borel measure on T ~ invariant under this action is Haar  measure, 

since, as we shall soon see, 4~(W ") is dense in T ~ 

We establish unique ergodicity of the unstable foliation by using Weyl's 

Theorem. If o" is a probability measure on R d, then ~ t r  denotes its image on T ~. 

A vector v E R d is called irrational if its coordinates are not rationally related. A 

measure cr on T ~ is e-uniformly distributed in a subset D of positive measure in 

T ~ if l t r (D) / t t (D  ) -  11 < e. If L is a line segment in R d, let trL denote normalized 

linear measure on L. 

WEVL'S THEOREM. Suppose that v is an irrational vector in R ~, D is Jordan 

measurable of positive measure in T d, and e > O. Then there is an r~ such that i l L  

is a line segment in R d in the direction of v of length greater than to, then ~crL is 

e-uniformly distributed in D. 

The proof of this is the same as that of the usual Weyl Theorem (where finite 

sequences of points replace line segments), namely verifying Weyl's criterion for 

qbcrL on the characters of T ~ (see [15, chap. 1.2]). We point out that the result is 

uniform in the initial point of L, i.e. that any translate of ~ rL  is also e-uniformly 

distributed in D. 

In order to use Weyl's Theorem, we need to know that the eigenspaces W~ 

contain irrational vectors. 

LEUMA 4.3. Each WA contains an irrational vector v~. 

PROOF. If )t is real, then v = (1, A,. �9 )td-l) is in W,, and is irrational since 

the characteristic polynomial of S is irreducible. 

If )t is not real, let w = ( 1 ,  A,-..,Ad-1), and put v ~ = w + f f + i ~ ( w - f f ) ,  

where ~: is a transcendental real number. Then v~ = (vl,- �9 va) ~ W~. If there 

are rationals cj such that c~v, + �9 �9 + c~vd = 0, then 
d d 

+ c,(X'- l-  0. 
j=l j~ l  

Since ~: is transcendental, each sum, beiag algebraic, must vanish, lrreduciblity 

of the characteristic polynomial then forces each cj to vanish. 
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If B is a measurable subset of WA with 0 < ~ o ~ ( B ) < ~ ,  put ~rs= 

~o~(B)-l(oJx [B),  where a~ [B denotes the restriction of oJ~ to B. The following 

result shows that the foliation of T a into cosets of ~(W~) is uniquely ergodic. 

LEMMA 4.4. I f  D is a Jordan measurable subset of T ~ with positive measure, 

and e > O, then there is an rl such that if B is a ball in W~ of radius greater than rl, 

then ~Pcrs is e-uniformly distributed in D. 

PaOOF. If A is real, this follows from Weyl's Theorem and Lemma 4.3. 

If A is not real, so that dim W~ =2, roughly we shall consider orb as nearly an 

average of line segment measures in the vA direction long enough for Weyl's 

Theorem to apply, and observe that an average of measures that are e-uniformly 

distributed in D again enjoys this property. 

The convolution of two integrable functions f and g on the group WA is 

defined by 

ff*g)(t)= f(u)g(t- u) 

and if o'1 and r are two finite measures on W~, their convolution is the measure 

(al * crz)(E) = fw, cr2(E - u) dcr~(u). 

Suppose we are given D and e as in the hypotheses. Let ro be supplied by Weyl's 

Theorem for vx, D, and (e/4)tz(D). Choose rl large enough so that if B is a ball 

in W~ of radius r > r~, and Bo is a ball of radius r -2ro ,  then o~(Bo)/O~,(B)> 
(1 - e / 4 ) ~  (D) .  

If B is now a ball of radius r > r~ in W~, let 13o and B1 be balls concentric with 

B of radii r - 2to and r - to, respectively. Let L be the segment of length ro in the 

direction v~ centered on the origin. If XB denotes the eharacteristic function of a 

subset B, and era, o'~o, o'81 are abbreviated to o', o'0, cry, then since 

we have 

XBo< X~I* XL < XB, 

b00"0 ~ blO'l * O'L ~ 0", 

where b~ = o~A(B~)/oJ~(B)>(1- e/4)Iz(D) (i =0, 1). Now for any u E W~ we 

have 

I~PcrL_.(D ) - ~ (D )[ < (e /4)~ (O ) 

by our choice of r0, and 
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I~(o" - b0o'0)(O)l < �89 etx (O) 

since b0 > (1 - e/4) t t (D) .  Thus 

I'~tr(D)- tt (O)l--< I ' l 'o ' (O)-  b,~(o', * cry)(O)l + b, I*(o', * ,r~) ( O ) -  tz (O)l 
+ ~eg (D) 

_--IO(r(O)- boOoro(O)'l + b, Jar, I*cr,.-u ( O ) -  tt (D)I &r,(u) 

+ ~e~ (O) 
< (�89 + ~e + ~e)i~(D) 

= e~ (D) .  

The next result uses this uniform distribution ~o prove that the toral 

automorphisms we are considering are Kolmogorov maps, and therefore is an 

alternative proof of Rohlin's theorem [31] in this case. 

LEMMA 4.5. Let S be an automorphism of T a as in Theorem 4.1, a be a 

smooth partition and [3 be a Jordan measurable partition of T d. I f  e > O, there is a 

ko such that for all k > ko, m > 0 ,  and t, E T d ( -  m - k <= i <= - k ), we have that 

e-almost every atom of -~ V_, ,_k(S- 'a + t,) is e-uniformly distributed in each 

element of [3. 

PROOF. Briefly the proof runs as follows. Fixing W~ with IA I>  1, we show 

that for any choice of u~ E T  ~, e-almost every atom of V~ + u,) is 

approximated by an average of balls in the W~ direction of a fixed size 

independent of m and the u~. Applying S k to these balls expands them by IA I ~, 

making them large enough to apply Lemma 4.4 to obtain e-uniform distribution. 

We then let u, = S-kt,, so that Sk(V~ + u,) = V-~_~(S- 'a  + t,). 

Since not all the eigenvalues A have modulus 1 (see [14]), fix a A with IA I > 1. 

Let B~ (r) denote the ball in W~ of radius r about the origin, which we identify 

with its image ~(B~(r)) in T n. The boundary of a is Oa = I . .J ,~OA, and put 

O~ (a, r) = Oct + B~ (r), the boundary of a thickened by r in the W, direction. Let 
b = min{/.t (C): CE/3} .  

We will show that given a 8 > 0, there is an r > 0 such that for all m > 0 and 

u~ E T a, the set E of t for which t + B~(2r) is contained entirely in one atom of 

V~ + u,) has measure i t (E)  > 1 - (eb/4) 2. Now t + B~(2r) is included in 

one atom of S- 'a  + u, provided that t f~ S-'d~ (a, 2r t A I') + u,. The complement 

of E is therefore 
0 

U S-'O~(a,2rlA I ')+ u,, 
i = - - r a  
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and has measure bounded by 

5~, > (S*&(a ,  2 r l a  I-i) + u_,)= ~ /,(&(a, 2r I* I-i). 
i=0 i =o 

Since a is smooth, ~ ( & ( a ,  s)) <- _ Ks for some constant K. Thus 

# ( T " I E ) =  < I~(&(a, 2rlXl-O)<=2Kr < 
i=0 

if r is small enough. 

It follows that (eb/4)-almost every A ~ V~ + u,) we have/z (A N E ) >  

(1 - eb/4)Iz(A) .  Let Ao = A f3 E, A1 --- Ao+ BA(r). Abbreviating B~(r) to B, we 

have 

Xao < XA, * XB < Xa . 

Thus if /XA denotes the normalized restriction of ~ to A, then 

ao/zao --< al(#a, */za) =< IZA, 

where a~ = I~(A, ) / I~(A)> 1 - eb/4. By Lemma 4.4, there is an r, such that the 

image under ~ of a ball in IV, of radius greater than r, is eb/4-uniformly 

distributed in each member of/3. Choose ko so r l a  I~> r~. Then since S~B is a 

ball in W, of radius > r~ for k > ko, we have, using essentially the same estimates 

as in Lemma 4.4, that for each C ~/3, 

I/Zs~a (C) - # (C) I -< I/~s~a (C) - a,/xs% * ~s~, (C) I + a~ I/~s% */Zs~a (C) - / z  (C) I 
+ ~eb 

r 
__< t Us ,A ( c )  - ao ,s, o(C) f + a, J (C)  - (C) I 

+ ~eb 

<�88 + a~�88 +�88 

< (C). 

We now describe the auxiliary mapping box partition mentioned above. For 

each A let P, be a parallelogram in IV, with one corner at the origin, so that 

translates of P~ by a lattice tile IV,. If A is real, then P~ is just a line segment with 

one endpoint being the origin. Let C" = @l~J=~ OPt, C u = ~)~Aj~I OP,, and C = 

C" @ C u, where the reader should recall our convention that sums indexed by A 

are over only those A with nonnegative imaginary part. We will typically be 

working with a C of small diameter. Then since (~hP, tiles R ~ under a lattice that 
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is the direct sum of the tiling lattices for the P~, there are bj ET d (1 _-< j _-< J) such 

that the boxes Cj = C +  bj (l_-<j_-<J) are disjoint and their complement 

Co = T~\ U~ Cj has small measure. The following shows that for k large enough, 

most atoms in V=~_~(S-~a + t~) are "sheeted" in the W" direction in each 

mappping box Cj for j _-> 1. 

LEMMA 4.6. Let a be a smooth partition of T d, and [3 be a mapping box 

partition as described above. Then given 8 > O, there is a ko such that for all 

k > ko, all m > O, and all choices of t~ E T d ( -  m - k <= i <= - k ), we have that 

8-almost every A E V =~_k(S-~o~ + t~) has a subset Ao with ~ (Ao) >. (1 - 8)/z (A), 

and such that for each ], 1 <= j <= J, we have 

AonCj =A; ~C=, 

where A $ E  bj + C" (see Fig. 1). 
c i 

ot~ Cj 

,-.s ./~ ~ ~  ~cU+ b~ 

bj o 

Fig. 1 

PROOf. Since the proof.is so similar to that of the previous lemma, we only 

sketch the main idea. From the proof of Lemma 4.5, we know that there is an 

r > 0 such that for almost every atom A '  in V~ (S- 'a + ui) is well approximated 

by an average of translates of the ball B in W" of radius r. Since S ~ expands 

distances exponentially in W", except for a part E of S ~B + t that lies within a 

fixed distance from the boundary (which therefore has relative measure in 

S~B + t which is exponentially small as k ~ oo), S~B + t is sheeted in the W" 

direction in each C~ (] > 1). That is, for j -> 1 we have 

[(S~B + t)\E] n Cj = F' �9 C", 

where F" C bj + C'. The same sheetedness persists to 8-almost all of A = SkA' .  
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PROOF OF THEOREM 4.1. As we remarked above, by the relative very weak 

Bernoulli criterion and the Relative Monotone Theorem, it is enough to show 

that if a is a smooth partition of T a, then for any t~ E T ~ the sequence {S- 'a + t~} 

is very weak Bernoulli. 

Let e > 0, and let ~$ be a positive number to be chosen later. There is an r / >  0 

such that if B is the ball T a of radius r/ and center 0, t hen /z (Sa  + B ) <  8 2. It 

follows that for every n > 0, the set E,  of points t such that 

1 
(4.1) --card{i:  1 <= i <= n, S ' t  + t_, E da + B}  >- 8 

n 

has/z (E,)  < 8. Choose a partition/3 = {Cj : 0 _-< / =< J} of T ~ into mapping boxes 

as above such that diam Cj < ~7 (1 _-< j =< J), and # (Co) < 8. 

By Lemmas 4.5 and 4.6, there is a k such that for all m > 0, we have that 
- k  - i  8-almost every A ~ V_=_~(S a + t~) is 8-uniformly distributed in each Cj, and 

contains a subset A0 with tz(A0)> ( 1 -  8 ) l ~ ( A )  and such that 

A o O  Cj = A g O C "  ( l = < j - < J )  

where A g C b; + C'. For these atoms A we define OA : A ~ T d as follows. Let 

~bj: A g---~ bj + C '  be an arbitrary map. Define 0A : Ao O C, --. Cj by 0A (ao + b) = 

qJj (a0) + b for ao + b ~ Ao N C~ = A ~ )  C ", so that 0A is measure preserving on 
each A0 n q .  Define 0A arbitrarily on (A \Ao) U (A O Co). Then 0A is not quite 

measure-preserving for three reasons: (1) A0 is not quite all of A, (2) Ao is not 

quite uniformly distributed in the Cj, and (3) U~-i C, is not quite all of T ~. 

However,  each of these errors is bounded by 8, so that if 8 is small enough, 0A 

will be an e-map for 8-almost every A. 

Let B '  be the ball in W" of radius r/ centered on the origin. Since the 

eigenvalues of S are nonrepeated,  S~B ' C B '  for all i _-> 0. The crucial property of 

0A is that if t ~ A0, then t - OAt E B ' ,  and hence S' t  - S'OAt E B '  for i _- 0. 

Choose n > k/e .  By (4.1) we therefore have that for t ~ A o O E , ,  the 

{S - ' a  + t~: 1 <-_ i <= n}-names of t and OAt agree in more than (1 - 8)n places. 

Since/z (E,)  < 8, the set of atoms A for which/z (Ao n E , )  > (1 - ~ ) / ~  (A)  has 

measure greater than 1 - V~. Hence  if 8 is chosen small enough, we have by 

Lemma 4.2 that 

d[{S- 'a  + t, 1317, {S-'~ + t,}~ < e 

for e-almost every A E VY-~_k(S-'a + t~), concluding the proof. 
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5. Irreducible solenoidal automorphisms 

In this section we prove the Skew Product Theorem for certain automor- 

phisms of groups whose dual is contained in a rational vector space. These 

automorphisms, which we have dubbed "irreducible solenoidal automor- 

phisms", together with group shifts, form the building blocks from which any 

group generated by {Ti3' : i E Z} is all of F. In the previous section we dealt mainly 

that preserve the Skew Product Theorem. This section logically includes the 

previous one. However, we hope that by emphasizing clearly there the geometry 

involved, the reader can follow the additional complications here more easily. 

The general solenoidal automorphism has been the major obstacle in extending 

results for automorphisms of tori to general compact groups, so that this section 

is the most important part of the~paper. 

A solenoid is a group G whose dual group U is a finite rank, torsion-free 

abelian group. By taking the tensor product of F with-Q, this definition amounts 

to saying that a solenoid is a group whose dual can be embedded as a subgroup 

of full rank in Q~. An automorphism S of a solenoid G has a dual automorphism 

T of r that can be uniquely extended to a rational vector space isomorphism of 

Qd. The solenoidal automorphism S is irreducible if the characteristic polynomial 

of the linear map T is irreducible, and if there is an element 3' E I" such that the 

group generated by { Ti3' : i E Z} is all of F. In the previous section we dealt mainly 

with the irreducible solenoidal automorphism S = C(p)' of T ~, where p(x) was 

irreducible in Z[x ]. There, heavy use was made of the fact that there was a lattice 

Z" invariant under T. In general no such invariant lattice exists in r ,  and this 

complicates the geometric proof of approximate independence on the solenoid 
itself. 

The same linear algebra used for the torus case together with the Relative 

Monotone and Factor Theorems show that to handle solenoidal automorphisms 

we need only consider the irreducible ones. 

THEOREM 5.1. The Skew Product Theorem holds for irreducible solenoidal 
automorphisms. 

Before beginning the proof, we first introduce some terminology and build 

some preliminary machinery. Some of this closely parallels the toral case, but 
there are novel features as well. 

Let S be an irreducible solenoidal automorphism of G, T be the dual 

automorphism of r ,  and y generate F under T. As noted before, we can consider 

r as embedded as a subgroup of Qa with full rank. Since the characteristic 
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polynomial for T is irreducible over Q, the set {y, T7 , - - - ,  T~-ly} forms a 

rational vector space basis for Qd. Let A be the subgroup generated by these 

basis elements, so that A forms a lattice in F. In the torus case A = F, but in 

general this is not true. It is helpful, though not strictly accurate, to think of A as 

being Z d contained in F = Q~. The ann~i la tor  H = A • is a closed subgroup of G. 

It is totally disconnected because its dual F/A is a torsion group. The quotient 

map 7r,: G---} G / H  is dual to the inclusion A CF. Since A is a d-dimensional 

lattice, its dual G / H  is isomorphic to T d. 

If we consider Q~ as embedded in R d, then we claim that either F is a lattice 

(corresponding to w or I" is dense subgroup of R d in the usual topology. For r 

is a closed subgroup of R d, and therefore has the form W O L  , where W is a real 

subspace and L is a lattice. Now W is T-invariant. If W ~  0, it must contain a 

point of F. Irreducibility of the characteristio polynomial if T then implies that 

d i m W = d ,  s o t h a t  R d =  W C F .  

There is a natural homomorphism qb: Rd---> G which plays a crucial role 

(similar to the covering map ~:  R ~ --->'r d of w in analysing the geometry of the 

action of S. Since F CQ d, a typical element of F has the form y = 

a l y  + a2Ty  + �9 �9 �9 + adT~- '% where a~ ~ Q. For t = (tl," �9 t~) E R ~, we define 

qb(t) E G by evaluating it at y:  

qb(t)(y) = exp27ri(haL + " "  + triad). 

The homomorphism �9 can be defined without recourse to coordinates by 

defining it to be the dual of the inclusion homomorphism F C F Q R, where F @ R 

is a d-dimensional real vector space. As before, either F is a lattice or a dense 

subgroup of F @R.  If F is a lattice, then qb is surjective, and we are in the case of 

w Recall that F itself carries the discrete topology. If F is dense in F @ R ,  then 

since a character on F @ R  is determined by its values on F, and since any 

character on F (with the discrete topology) can be matched at any finite number 

of elements by a character of F Q R ,  we see that �9 is injective with dense image. 

Thus in the case we are primarily concerned with, ~(R '~) is a dense, d-parameter  

subgroup of G. Its cosets foliate G, and the action of S on this d-dimensional 

foliation plays a key role. 

With respect to the basis {y, T y , . . . ,  T ~ ly} of Qd, the matrix of T is the 

companion matrix C ( p )  of the characteristic polynomial p ( x )  of T. The 

transpose S = C ( p ) '  acts on R ~. Then 

�9 (St)  = S ( ~ t )  (t E Rd), 

which is proved by evaluating both sides on a typical element of F. 
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The homomorphism zrn~: R ~ ~ G / H  has kernel Z d, and therefore induces 

an isomorphism of T d = Rd/Z ~ with G/H.  We use this isomorphism to identify 

T a with G/H.  

Now H is not necessarily invariant under S, for A is not necessarily invariant 

under T. However, S H  projects under rrn to a finite subgroup of T d with kernel 

H n SH. Thus if /zH denotes Haar measure on H, then /zn(H O S H ) > 0 .  A 

novel element in the proof is that relative to H the iterates of S on H are 

independent. The proof of this essentially reduces to Gauss' Lemma. 

For m _-> 0, let 

H ,  = H A S H A . . . N S ' H  and H_~ = S - m H A S - ~ ' + 1 H O . . . O H .  

LEMMA 5.2. For nonnegative integers m and n, the subgroups H,~ and H_. of 

H are independent subsets of H with positive izH-measure. 

PROOF, The dual group of H/H_n n Hr~ is (E~=-m TiA)/A (the change of sign 

in the indices comes from (SH) • T - I H  l =  T-1A), which is finite since A has 

full rank in F. Thus/xH(H-,  n H,,) > 0, so that p.n(H_,) and /zH(H,,) are both 

positive. 

Let I EI  denote the cardinality of E. Independence of H-n and Hm is 

equivalent to I H / H _ ,  n H~ I = I H / H - .  I" ] H / H~ I, which is in turn equivalent by 

duality to 

A polynomial that has integral coefficients whose greatest common divisor is 1 

is called primitive. There is an integral multiple q(x ) = aux u + �9 �9 �9 + ao of the 

characteristic polynomial p(x )  of T that is primitive. If (5.1) were false, there 

would be integers bj such that 

n + d - 1  

(5.2) ~ bjTi'y = O. 
j = - r a  

Choose n minimal for which such a relation holds. Minimality of n guarantees 

that ad does not divide bn§ for otherwise, using q ( T ) y  = 0, there would be 

such a relation with n replaced by n - 1. If 

m + n + d - I  

r ( x ) =  ~ b,_,x', 
1=0 

then since r (T)y  = 0, q(x)  must divide r(x)  in Q[x], say q ( x ) s ( x ) =  r(x)  for 

some s ( x ) =  c . . . .  ~xm+"-~+ " " +  co~Q[x] .  Let c be an integer such that cr(x) 
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is primitive. Then the product  cr(x) of q(x)  and cs(x) is primitive by Gauss'  

Lemma, which means c = --+ 1. Hence b~.d-1 = adc,,..-1, contradicting our as- 

sumption that ad does not divide b~§ 

The subgroups H_,  and H,, provide a finitistic algebraic analogue on H of the 

stable and unstable subspaces. For if g and h are in the same coset of H_~, then 

S'g and Sih are in the same coset of H for 0 _--< i =< n. If we let H_.  = ("1~=~ H_,, 

H= = 1"17,=~ H.,, then H = H_|174 and the decomposition of H into cosets of 

/ - /~ and into cosets of H= give the stable and unstable "foliations" of H, true 

analogues of the corresponding subspaces. However,  we find it convenient to 

keep to finite intersections. 

We will now use the geometry of the linear map 5~ via �9 to obtain the same 

sort of uniform distribution results as in w The definitions of the weakly stable 

and unstable subspaces, and so on, apply equally well to S here. Thus W ", W", 

W~, to~, and B~(r) mean the same as in w with respect to S. Note, however, that 

here W s or W" could be trivial. As before, there is a metric on R d such that 

multiplies distances by 1A I on W~, and this metric induces a compatible one on G 

via ~.  The proof of Lemma 4.3 applies since p(x) is irreducible to show that each 

W~ contains an irrational vector v~. 

The next two lemmas are preparation for the case W u ~ 0. The case when all 

eigenvalues of .~ have modulus 1 is handled separately. 

Let a '  be a smooth partition of T d into connected sets, and a = ~-h~(a'). We 

call such an a a smooth partition of G. The first result shows that most atoms of 

V o (S- 'a + g~) are "thick" in the unstable direction. Recall that B~ (r) is the ball 

in W~ of radius r about 0, and we let B"(r)  = Or~l>~ B~ (r). We identify B,(r )  and 

B~(r )  with their images in G under qb. 

A subset E of G is H,,-saturated if E + H,, = H,,, that is, E is a union of 

cosets of H,,. 

LEMMA 5.3. Let a be a smooth partition of G, and suppose W " ~  O. Given 

77 > O, there is an r > 0 such that for all m > 0 and all g, ( - m <= i _~ 0), rl-almost 

every atom A ~ V~ +g, )  contains an H,,-saturated subset Ao with 

/z (Ao) > (1 - 77)tz (A ) and Ao + B ~ (2r) C A. 

PROOF. The proof consists of the same sort of estimate as in the proof of 

Lemma 4.5 of the measure of the set of points exponentially close to the 

boundary of a ' .  

An atom Ak E a has the form rr~,l(A ~), where A ~ ~ a '  is connected with 

piecewise smooth boundary. Ignoring the null set Oa', there is an open 

connected set D~ CR a with piecewise smooth boundary, unique up to transla- 
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tion by connectedness of A ;,, such that zrH~(Dk ) = A [,. Hence Ak = O(Dk )~) H. 
Since qb(R d) is dense in G, for arbitrary g, E G there is a t, E R d such that 

Ak + S-~g, = ~(Dk + t , ) G H  for every k. Thus an atom A E V~ + g,) has 

the form 

A = ('~ S'(qb(Dk, + t _ , ) ~ ) H ) =  ['~ (~(S'Dk, + S't_,)~)S'H).  
i ~ 0  i = 0  

Now S 'H is a finite disjoint union of cosets of H,,. Hence each term in the 

intersection is a finite disjoint union of H,.-saturated sets of the form 

qb(S'Ok, + u,)(~Hm. 

Therefore  the intersection A itself is a finite disjoint union of sets of the form 

i = t )  

for various choices of the u, 

Let p = min{I A, I: I A, I > 1} > 1. Since each Dk has smooth boundary, and since 

expands distances in the W" direction by a factor of at least p, the proportion 

of S~Dk + u~ lying a distance less than 2r from its boundary in the W" direction is 

bounded by a constant times rp-'. It follows that the measure of the set of points 

g ~ O such that g + B " ( 2 r ) ~ H , .  is not completely contained in a single atom of 

S-'t~ + g~ is bounded by Krp -~ for some constant K. Hence the set E of g for 

which g + B"(2r )~Hm is in one atom of V~ + g,) has measure greater 

than 

1 -  ~ Krp-~ > l - ~ Krp-~ = l _ - K r  >1_ ,12  
i=0 , = o  1 - p ' 

provided r is small enough. 

Thus for 0-almost every A E V~ + g~), we have that if Ao = A A E, 

then /z (A0) > ( 1 -  r/ )/z (A ). Since A and E are H,,-saturated, so is their 

intersection Ao. Finally, it follows from the definition of E that Ao + B u (2r) C A. 

The subspaces W~ of R d project under r  to T d, and with respect to their 

images construct a mapping box part i t ion/3 '  of T d exactly as in w We remind 

the reader that /3 '={C~,C '1 , . . . ,C)} ,  where C ~ = C ' + t ~  (l_-<j=<J), C"-- 

~r, qb(C ~ (~ CU), where C '  and C u are parallelograms in W" and W u with small 

diameter. Let /3  -- rr~l(/3'). We shall identify C" and C u with their images in G 

under qb. Thus if b s is chosen such that 7r , (bj )= tj, then 7r~1(C~) = Cj = 

C'| 
The next result, containing the analogues of Lemmas 4.5 and 4.6, shows that 
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with respect to /3 most atoms of V-~ k(S-~a +g~) are nearly uniformly 

distributed and "sheeted" in the W" direction. 

LEMMA 5.4. Let a be a smooth partition o]: G, fl be a mapping box partition as 

described above, and suppose that W u ~ O. Given t5 > 0, there is a k > 0 such that 

for all m > 0  and all g, ( - m - k < = i < = - k  ), we have that 8-almost every 

A E V-~_k(S- 'a+g, )  contains an H,,+k-saturated set A '  such that / z ( A ' ) >  

( 1 - 8 ) / z ( A ) ,  A '  is 8-uniformly distributed in every CsE /3, and A ' N C j =  

A J �9 CU, where A s C C ~ �9 H + b s (see Fig. 2). 

A' 

cosets of Hm, k, 

AJ 

C u + bj 
bj 

Fig. 2 

PROOF. Let r/ be a small positive number to be chosen later. By the previous 

lemma, there is an r > 0  such that for all m > 0  and all h, ( -m_-< i_ -  <0) ,  

w-almost every A E V~ + h~) contains an Hm-saturated subset Ao with 

/z (A0) > ( 1 -  "r/ )/z (A ) and Ao+BU(2r)  CA. Fix a A with IAI >1 .  If A l =  
Ao+ B~(r), then A o C A I C A ,  and 

Xao =< XA, * Xm(,) -- XA. 

Applying S k to this gives 

(5.3) XSkAO < XSkA, * XBA(rlAI k) ~ ~SkA. 

By Lemma 4.4, there is an rl such that if B is a ball in W~ of radius greater than 

rl, then ~o'~ is 7/-uniformly distributed in/3. Thus for all k large enough so that 

r lAI k > r l ,  the central term in (5.3) is an average of measures that are 

r/-uniformly distributed in/3. Since/z (Ao) > (1 - 7/)/.t (A), the same proof as in 

Lemma 4.5 shows that SEAo and SkA are 4r/-uniformly distributed in /3. 

Let p = min{I A [: I h l >  1}. Suppose that g E Ao, and Skg E C s for some j => 1. 
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Then Skg = bS + b" + bj, where bs E C ~ and b" ~ C u. Since g + B " ( r ) C A ,  it 

follows that Skg+BU(rp~)CSkA.  Hence if k is large enough so that r p k >  

2max{diamC~: l=<j -<J} ,  we have that S k g E b  ~+C u + b j C A ,  where the 

central term is the W" sheet through $kg in Cj. Thus for all large enough k there 

is a subset A '  of A containing Ao such that SkA ' has the required form. Since 

both SkAo and SkA are 4~/-uniformly distributed in/3, A '  will be 8-uniformly 

distributed in /3 if 7/ is small enough. 

The preparations are complete. 

PROOF or  THEOREM 5.1. Since A generates the dual group F under T, the 

tr-subalgebra ~ ( H )  generates ~t under S. Taking an increasmg sequence of 

smooth partitions of G whose span is ~ t (H) ,  the Relative Monotone Theorem 

shows that it is only necessary to show that {S-~a + g~ } is very weak Bernoulli for 

a smooth partition a. The proof of this breaks naturally into three cases. 

Expansive case. This occurs when all the eigenvalues have modulus greater 

than 1. Suppose that a is a smooth partition of G and fix g~ E G. Let e > 0, and 

let 8 be a small positive number to be determined later. For the expansive case 

W ~= 0, and for the mapping box partition /3' we take the C~ (j => 1) to be 

parallelograms in T d with small diameter, and such that /z(Co)< 8. 

By Lemma 5.4 there is a k such that for all m > 0 ,  8-almost every 

A ~ V-~_k(S-'a + g~) contains an H,,+k-saturated subset A '  such that/~ ( A ' ) >  

( 1 - 8 ) / x ( A ) ,  A '  is 8-uniformly distributed in /3, and for l=<j  =<J we have 

A ' A C ~  = A J O C  ~, where A J C H + b j .  Since A '  is H,,§ A j is a 

union of cosets of Hm+k. 

Let n > k/e. Then since H ,  and Hm§ are independent subsets of H, so that 

their coset partitions of H are independent, there is a measure-preserving map 

~bs: A t ~ H + bj such that g - ~j(g) E H_~. This property of ~b~ means that S'g 

and S'~bs(g ) are in the same coset of H, and hence have the same a-name,  for 

0 =< i =< n (i.e. a point and its image under qsj are on the same "contracting fiber" 

in H).  Define 0A on A ' N  Cs = A J ~ ) C  ~ by 

O.~(g+b")=~bs(g)+b" ( g E A  s, b " E C " ) ,  

and arbitrarily on (A \A ' )  tJ Co. Now OA is measure-preserving on each A '  n Cj 

(j => 1). Since/x (A ') > (1 - 8)~t (A),/x (Co) < 8, and A '  is 8-uniformly distributed 

in /3, 0,~ will be an (e/16)-map for 8-almost every A if 8 is small enough. Off 

( A \ A ' )  U Co, a set of measure less than [8 + 8(1 + 8)]/z(A), the {S-'a + g,}l'- 

names of g and OA(g) agree exactly. By Lemma 4.2, it follows that if 8 is small 

enough, then for e-almost every A E V--~-k(S-ia + g,) we have 
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(5.4) d[{S-'a + g, IAIL {S-'a + g,}] < e. 

Mixed case. This is the case when some eigenvalues have modulus =< 1, and 

some have modulus > 1. Note that if all eigenvalues have modulus =< 1, and 

some have modulus < 1, then replacing S by S-'  puts into either the expansive 

or mixed case. 

Let a = 7rhl(a ') be a smooth partition of G, let e > 0, and let 6 be a small 

positive number to be determined later. Choose r / > 0  such that 

/z(aa '  + B(~7))< 6 4, where B(~7) denotes the ball of radius 71 in T ~ about 0. Let 

/3 = {Cj : 0 < ] < J} be a mapping box partition of G as described above such that 

diam zr, Cs < rt (1 _-< j _-< J)  and/z  (Co) < 6. By Lemma 5.4, there is a k > 0 such 

that for all m >0 ,  6-almost every A E V-~_k(S-~a + g~) has an H,,§ 

subset A '  such that # ( A ' ) > ( 1 - 6 ) # ( A ) ,  A '  is 8-uniformly distributed in /3, 

and A' f3  C, = AS(]~C" ( l < j ~ J ) ,  where AS C C " ~ H  + bs. 

Denote by B'(6)  the ball in W' of radius 6 about 0, identified as usual with its 

image q~B'(6) in G. For 1 _-< j-< J we will construct a measure-preserving map 

Os: AS --* fi~s C C" ~ H + bs such that g - q's(g) E B ' (8) ,  and if b ~ C' + bs, then 

H + b intersects ~s  in exactly one coset of H,,+k. Figure 3 should make clear the 

idea behind our admittedly clumsy construction. We can write H as a finite 

disjoint union Uq(H,,+k +hq), where hq are coset representatives of the 

elements of H/H,,+k. Then C ' ( ~ H  = Uq(C' (~Hm+k + ha). Since A s is H,,,+k- 

saturated, A s fq (C'(~Hm+k + bs + hq)= Eq E)H,,.k, where Eq is a measurable 

A j ~.J 

//I / /I \ / I  
of 

CS,~ bj Fq 
Fig. 3 

/ /  

Eq 

subset of C ' +  bj + hq. Let co' be Lebesgue measure on C" or any translate. 

Partition C '  + bj into sets l~q such that 

= 

r 
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Then there is a measure-preserving map ~b): UqEq ~ Uq(ff.q + hq) such that 

qs~(Eq)=E~+h~. It follows from diamC~ < 8  that g - ~ ( g ) ~ B ' ( , 5 ) .  For a 

typical element e + h of Eq @Hm+~ define O~(e + h) = ~b~(e) + h. This defines ~ 

on A (  

We can now produce 0A : A ~ G for S-almost every A. Fix n > k/e. Using 

the ~b~ we first make a preliminary rearrangement O,~ of A '  in each C~ in order to 

have each coset of H intersect O;,(A') in one coset of H,.+~. We then expand 

each coset of H,,+~ along the "contracting fibers", namely cosets of H_., by a 

map 0~. Then 0A will be the composition of O,~ and 0~,. 

On a typical element a + b ~ A i ~ ) C U = A ' A C ~ ,  define O;,(a+b)= 
qs~ (a) + b, so that 

O ;,(A S (~ C')  = .7i j + c" = O ff.q (~) H,.+k (~) C", 
q 

where ff~q C C" + hq + b s as above. Define 01 arbitrarily on (A \A ')U ( A n  Co). 

Then O~, is measure-preserving on A'  n Cj (.j --- 1), and each coset of H not in Co 

intersects O~,(A') in exactly one coset of H,,§ Since Hm.k is independent of 

H_., there is a measure-preserving map ~: H,,+k ~ H such that h - ~(h) E H_,. 

Define 0~, on a typical element e + h + b of Eq @Hm§ @ C u by O~(e + h + b) = 

e + ~(h)+ b, and arbitrarily on O~,[(A\A')U (A n Co)]. Since OI(A'\Co) inter- 

sects each coset of H in C~ (j > 1) in exactly one coset of H,,.~, it follows that I 

loathe writing up this fulsome material and that 0~ is measure-preserving on 

each fi,~@C" = O~,(A~@CU). Let 0A = 0~,OJ,. Then for./=> 1 we have that the 

restriction of 0A to A ' O  Cj is a measure-preserving map to Cj. 

Since t z (A ' )>(1 -8 )p . (A) ,  A '  is 8-uniformly distributed in 13, and 0,~ is 

measure-preserving on A ' A  Cs (j---1), it follows that 0A is an e-map if 8 is 
chosen small enough. 

Since Iz(cga'+B(rl))< 8", the set E of points g ~ G such that 

L I {i: 1 <= i <= n, S 'g + g_, E + B(,7))}I > 8 2 
n 

has/~ (E) < 82. Hence for S-almost every A,/~ (A O E)  > (1 - 8)/~ (A). Thus for 

28-almost every A,/~ (A'  n E)  > (1 - 28)/x (A). If g ~ (A'\Co) n E, then since 

g - O~,(g) ~ B'(rl) and S does not expand distances in B'(rl) ,  g and O~,(g) have 

the same {S-'a + g,}7-names. Since O~,(O;,g)- ~ g  ~ H_,, we have S'O~,(O;,g)- 
S'O~,g E H for 0=<i=<n, and hence O~(OJ, g) and #~,g have the same 

{S-'a + g,}~-names. Thus for g ~ (A'\Co) n E, the {S-'a + g,}7-names of g and 

OAg agree. By Lemma 4.2, if 8 is small enough we obtain that for e -almost every 
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A ~ V--~_~(S-'o~ + gl), the d inequality (5.4) holds, concluding the proof of this 

case. 

Central Case. Here we treat the case when all eigenvalues of T have 

modulus 1. This does not occur for toral automorphisms (Kronecker [14] proved 

over a century ago that an algebraic integer all of whose conjugates are on the 

unit circle must be a root of unity), but can on solenoids. For example, the 

companion matrix of x2+ �89 + 1 has eigenvalues ( -  1 - iX/-~)/4, each of mod- 

ulus 1. 

The geometry of stable and unstable subspaces is now unavailable, but is 

replaced by a multiplicity of images which was a mere nuisance in the previous 

two cases. The uniform distribution of these images is the content of the 

following result. 

LEMMA 5.5. Let fl be a smooth partition of T a. Given 6 >0, there are 
arbitrarily large k > 0 such that for all m >- O, every translate of the finite subgroup 
7ru(SkH,, ) is 6-uniformly distributed in ft. 

PROOF. Uniform distribution of a finite set refers, of course, to normalized 

counting measure on the set. We first show that ~ru(S~H~,) is the same for all 

m _--- 0. This is a consequence of the independence properties of the S'H. Since 

S~H,. CS~H, it suffices to show that zr .(SkH,.)D 7rH(SkH). Since S-kH is a 

union of cosets of H_~, Lemma 4.2 implies that S-kH is independent of H,.. 

Hence if g E H, then Hm t3 (S-kH + g ) #  0 since it has positive # . -measure .  If 

g'  is an element of this intersection, then S~g '+H = Skg +H, SO that 

~ , (S~H~)  D ~,~(S~H). 
Let /3  and 6 > 0  be given. Choose ~ / > 0  so that /z  (8/3 + B(r/)) <�89 for 

each Cs E/3. We next show that there are arbitrarily large k for which rtu(SEH) 
contains d vectors spanning a parallelogram with positive measure and with 

diameter less than 77. For if the eigenvalues L of T have modulus 1, by 

Dirichlet's Theorem there are arbitrarily large k for which I A ~-  11 < rl holds 

simultaneously for 1 _-< i _-< d. Then if {e , .  �9 ea} is the standard basis for R a, 

since d k -  I is nonsingular (none of the )t, are roots of unity), the vectors 

{dEe, - e, : 1 <= i <= d} span a parallelogram/5 of positive Lebesgue measure such 

that diam/5 < rl. Since 7rH~(dke, - e,)= 7rH(SkdP(e,)-O(e,))E 7r~(SkH) and 

7rH~ is a local isomorphism, P = 7ruqb(/5) satisfies our requirements. 

There is a finite subset K of ,rn(S~H) such that {P + k : k E K} is disjoint and 

the complement E of [ - J ~ ( P  + k) has/x ( E ) <  2art; this is because P tiles the 

unit cube in R a to within r 1 of its 2 d faces. For each t E T  d, off the set 

(0/3 + B07)) U (E + t) each Cs is a union of parallelograms P + k + t for k in 
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some subset of K, and so if r/<2-a-~minj/z(Cj), each Ci is approximated to 

within 6/z (Cj) by a union of the P + k + t. Now each P + k + t contains precisely 

the same number of elements of zrH(SkH). Hence rrH(SkH) itself is 6-uniformly 

distributed in /3. 

We are now ready to prove Theorem 5.1 for the central case. Let a, /3 ' , /3,  8, 

and 7/ be the same as at the beginning of the proof of the mixed case. Choose k 

by Lemma 5.5 such that for all m > 0 every translate of zr,~(SkH,,) is 6-uniformly 

distributed in /3'. Now if A E V~ + gi), then A + H,, = A since A is 

H,,-saturated. Thus XA * Xnm = XA. Applying S ~ gives 

X s k A  * XSkHm ~" X S k A .  

Since every translate of S ~H., is ~-uniformly distributed in/3, the same property 

holds for an average S kA of them. The proof is now completed exactly as in the 

mixed case, where now W" = 0 means that sheetedness with respect to C" is 

trivially satisfied. 

6. Totally disconnected groups 

We shall prove here the Skew Product Theorem for automorphisms of 

compact abelian totally disconnected groups. The proof uses algebraic ideas 

from [18]. Recall from w that if S is an automorphism of G, H is an invariant 

subgroup of G under S, and V = U• then V/H denotes the skew product 

Ux~S~m, where 4g = ~-~b, and that V is a skew product of V/H with SH. We 

identify V/H with V on the factor N Q M ( H ) .  

THEOREM 6.1. The Skew Product Theorem holds for ergodic automorphisms of 
compact abelian totally disconnected groups. 

PROOF. A compact abelain group is totally disconnected if and only if its dual 

is a torsion group. We shall first prove the result when the dual is annihilated by 

multiplication by a prime p (i.e. the dual is a p-group), and then obtain the 

general case from this. 

So assume that S is an ergodic automorphism of a group G whose dual lI is a 

p-group. If Zp denotes the field Z/pZ, and R is the ring Zp[x, x -I] of polynomials 

in x and x-1 with coefficients in Zp, then R acts on II via the dual automorphism 

T of S by 

( ~  ajxJ).o)= ~ a,T'o) (o)~[I). 
i = - m  i = - m  

Since Zp is a field, R is a principal ideal domain (this is where primality of p 
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enters). Let {~j}7 be an increasing sequence of finitely generated R-submodules  

of f~ whose union is fL By the fundamental theorem for finitely generated 

modules over a principal ideal domain (see, for example, [19]), each f~j = 

Ej@Fj, where Ej is torsion and Fj is free over R. Now R-submodules  of finitely 

generated R-modules  are again finitely generated, and a finitely generated 

torsion R-submodule  is finite. Since T is aperiodic on 1~, this forces each Ej = 0. 

Thus l'l s = F~=R~ol@. . .@Rc%,  where {~o,,...,co,,.} is a free R-basis for Fj. 

Hence the factor automorphism S on M(I~]-) is the group shift on Z~. If follows 

from Theorem 3.1 that if U x , S  is a skew product acting on ,N'@M, then 

)r is Bernoulli mod X. Since l~jTl~, we have M(fI~)/~M, and an 

application of the Relative Monotone Theorem shows that )r  is Bernoulli 

mod N. 

We now turn to the general case, Let S be an ergodic automorphism of G with 

dual automorphism T of the torsion dual F. The subgroup F(n) = {y E F: ny = 

0} is T-invariant. Let V =  U x , S  be a skew product acting on X @ M .  Since 

F(m !)TF,  which implies N @ M ( F ( m  !)• it suffices by the Relative 

Monotone Theorem to show that )r ~ )M (F(m)• is Bernoulli mod N for every 

m. If this were not so, take m to be minimal for which this fails. Choose a prime 

p dividing m. By minimality of m, N@d/t(F(m/p) ~) is Bernoulli mod ,N'. Now 

V/F(m) • is a skew product of V/F(m/p) • with the restriction of S to F(m/p) • 

(the annihilator taken with respect to F(m)l).  The dual of F(m/p) • is 1~ = 

F(m)/F(m/p), which is a p-group. Also, T is aperiodic on 1"~, for if y E F(m) has 

Tky = y + y', y ' E  F(m/p), then Tk(m/p)y  = (m/p)y. Aperiodicity of T im- 

plies (m/p)y  = 0, whence y C F(m/p). Thus V/F(m) • is a skew product of a 

Bernoulli factor mod ,N" with an ergodic automorphism of a group whose dual is 

a p-group. By the first part of the proof, N ~ ) d ~ ( F ( m )  • is Bernoulli mod 

~V(~d~(F(m/p)• which in turn is by our assumption Bernoulli mod N. Thus 

)r ~ )M (F(m)• is Bernoulli mod ,IV, and this contradiction completes the proof. 

The reader may be tempted to think that with more algebraic care, the use of 

results from ergodic theory such as the Relative Monotone Theorem could be 

circumvented. For example, in the first part of the proof if it were true that the 

torsion-free R -module ~ were actually free (true if 1"~ is finitely generated), then 

the proof would be finished. 

However,  it is not always possible to obtain algebraically an independent 

generator, as the following example shows. Let F be the vector space over Z2 

with basis {yi : i ~ Z} U {~:j : j _-> 1}. Define an automorphism T of F by Tyi = y~+~, 

T~:I = ~1 + ~/o, and T~j = ~j + ~-1 (j => 2). The subgroup Fs generated by ~ under 

T contains ~:~ for i -< j and all the 7,. Each Fj is free over R = Z2[x, x-l] with basis 
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{~s}, and any finitely generated R-submodule is contained in some F s. The dual 

automorphism S on the factor At(F,) has independent two-set generator P~ 

induced by the coordinate ~j. But Pi is independent of Pj for i~  j since they 

depend on different coordinates. This means that although for each j, d~(F]-) has 

an independent generator Ps, these Ps do not converge and so do not allow us to 

conclude anything about the limiting tr-algebra ~ .  The proof of the absolute 

Monotone Theorem shows that by using ergodic theory, one can arrange to have 

independent generators P; of At(F~) which converge arbitrarily rapidly to a 

partition P, which will therefore be an independent generator for ~ .  This cannot 

be done algebraically. 

7. General groups 

The results of the previous two sections are assembled here into a proof of our 

results for general compact abelian groups. We also indicate how they can be 

extended to nonabelian compact groups. 

As noted in w both the Automorphism and Splitting Theorems follow from 

the following statement, repeated here for reference. 

SKEW PRODUCT THEOREM. Skew products with ergodic automorphisms of 
compact abelian groups are Bernoulli mod the base factor. 

PROOF. The basic strategy is to build up a general ergodic automorphism 

from those of solenoids and totally disconnected groups by using duality and the 

Relative Factor and Relative Monotone Theorems. 

Let S be an ergodic automorphism of the compact abelian group G, with dual 

automorphism T of the discrete dual F. As usual, .,~ denotes the Borel sets on 

G. Let U be a map of (X,N, v), and let V = Ux,S.  
Denote by ~ the torsion subgroup of F, that is, the subgroup of elements with 

finite order. Clearly f~ is T-invariant. Let H be the annihilator of I~. Then V/H 
is a skew product of U with the ergodic automorphism S~m of G/H, whose dual 

is torsion. Thus by the previous section, ,h" @d~ (H) is Bernoulli rood N. Now 

V is skew product of V/H with Sr~. The dual of H is the torsion-free group F/O. 

Also, T is aperiodic on F/f~, for if Tky = y + to for to E 1~, then nto = 0 for some 

n. Hence Tk(nT)= ny, so aperiodicity of T shows n3, = 0, that is 3' E I~. Hence 

SH is ergodic, and we are reduced to proving the Skew Product Theorem for 

groups whose dual is torsion-free. For then W~)d~ would be Bernoulli rood 

N @ M (H), which we already know to be Bernoulli rood N. By our remark in w 

it would follow that X Q d ~  is Bernoulli mod N. 
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Thus we assume that F is torsion-free. The tensor product F@ Q consists of 

sums of the form y l @ q l + ' " + y ~ @ q k ,  where y~EF, q, EQ.  The map 

y ~ y @1 is an embedding of F into F @ Q  since F is torsion-free (see [10]). 

F@Q is a rational vector space, and T extends to a rational linear transforma- 

tion of F @ Q  by T ( y @ q ) =  Ty@q. This extension is an automorphism of 

F@Q. For T is surjective since Ey, @q~ = T(E T-ly~ @q~), and T is injective 

because if T(E y, @ q~) = 0, then for any integer m such that mq~ ~ Z we have 

0 = T(Eyi@mq~)= T(E(mq~)y~)@l, 

which implies E(mq~)y~ = 0, so that m Ey~ @q~ = 0, or Ey~ @q~ = 0. 

Let t3 be the dual of F@Q,  S the dual of the extension of T to F Q Q ,  

zra: t~--* G the quotient dual to F CF@Q,  and d~: X ~  t~ any measurable 

function such that 7ra~ = ~b. Then V is the factor U• so by the 

Relative Factor Theorem it is enough to restrict our attention to the case when F 

is a rational vector space. 

With this assumption on F, we can make it into a module over R = Q[x, x- l]  
under the action of T just as in w where we have replaced the coefficient field 

Zp with Q. The ring R is again a principal ideal domain; indeed our embedding 

of F into a rational vector space was necessitated by Z[x, x-l] not being principal. 

Let {Fj} be a sequence of finitely generated R-submodules increasing to F. By 

the Relative Monotone Theorem, it is enough to prove that )r is 

Bernoulli rood )r 

By the fundamental theorem for finitely generated modules over a principal 

ideal domain, Fj is the direct sum of a torsion R-submodule E and a free 

R-submodule F. 

Since a submodule of a finitely generated R-module is again finitely gener- 

ated, E is a finite dimensional rational vector space on which T is an 

isomorphism. The linear algebra of w using the primary and rational decomposi- 

tions, which is less complicated here because we can disregard lattices, shows 

that T~ is a finite succession of skew products with automorphisms whose matrix 

is the companion matrix of some irreducible polynomial in Q[x]. Theorem 5.1, 

together with another application of the Relative Monotone Theorem, show that 

the Skew Product Theorem holds for each of these component automorphisms. 

Hence we can conclude that if K = E L, then X @ d / ( K )  is Bernoulli mod N. 

Now V is a skew product of V/K with St. The dual of K is the free R-module 

F = R f l @ "  "ORf,. It follows that SK is the group shift on t~'. By Theorem 3.1, 

the whole factor ) r  is Bernoulli mod )r which we know is 

Bernoulli mod )(. Hence 2r @d/(F~) is Bernoulli rood )r completing the proof. 
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REMARK ON THE NONABELIAN CASE. It has been shown by Yuzvinskii [41], and 

more simply by Miles and Thomas [21], that an ergodic automorphism of a 

general compact group is the inverse limit of automorphisms which are a skew 

product of a compact abelian group automorphism with a group shift on a 

nonabelian compact group. Our results hold for abelian groups, and taking a 

further skew product with a nonabelian group shift is covered by Theorem 3.i. 

The Relative Monotone Theorem shows that the Skew Product Theorem is 

preserved under inverse limits, and hence all of our results apply to nonabelian 

groups as well. 

8. Complemented translation invariant factors 

A factor ~r of a map U of (X, W, u) is complemented if there is a factor ~ of U 

which is independent of M and such that M v ~ = N. Such factors are of interest 

for they decompose the map into the direct product of two (possibly simpler) 

maps. Thouvenot's notion of a map being finitely determined relative to a factor 

gives a necessary and suiticient condition for the factor to have a Bernoulli 

complement, that is for 2r to be Bernoulli mod M. 

In a Bernoulli shift, there is one easily obtained necessary condition for a 

~[actor to be complemented. If M is such a complemented factor for U, then for 

any factor M' strictly larger than M we have h (U, M') > h (U, J ) .  We shall refer 

to this property by saying that sr is entropy maximal. It is easy to deduce from 

lemma 2 of [3] or from [28] that complemented factors of a Bernoulli shift are 

entropy maximal. However, Ornstein [26] has produced an example of an 

entropy maximal factor of a Bernoulli shift that is not complemented. 

Certain factors of group automorphisms arise in a natural algebraic way. If S 

is an automorphism of the compact abelian group G with Borel sets JR and H is 

a closed subgroup of G invariant under S, then ./,g (H) is an "algebraic" factor of 

S. The following result classifies those algebraic factors that are complemented, 

and shows that the pathological behavior of Ornstein's example is absent for this 

restricted class of factors. 

THEOREM 8.1. With the notation established above, we have that the factor 
d~(H) of an automorphism S is complemented if and only if the restriction 
automorpl~ism Sn is ergodic if and only if d~(H) is entropy maximal. 

PROOF. We have indicated before that if d~ (H) is complemented, then it is 

entropy maximal. 

If H is invariant under S, then, by taking a Borel cross section to the quotient 
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map G ~ G/H, S can be considered as the skew product of Sore with Sn, where 

./,/(H) is now the base factor. We consider the more general situation of a skew 

product V = U x , S  of a map U of (X,N, v) and an automorphism S of the 

compact abelian group H. 

If S is ergodic on H, then the Splitting Theorem shows that the base algebra A c 

has a Bernoulli complement, and hence is entropy maximal. 

We complete the proof by showing that if S is not ergodic on H, then the base 

factor N is not entropy maximal. If S is not ergodic on H, then the dual 

automorphism T on F =/2 /has  nonzero periodic characters. Hence there is an 

integer k > 0 such that P = {y ~ F: Tky = y} is a nontrivial subgroup of F. Let 

K = P~, a proper subgroup of H. Since T k is the identity on P, S ~ is the identity 

on H/K,  so the entropy of Sn/K is 0. The algebra N ~)M (K) properly contains 3c 

since K g  H, and is a factor of V since .,r is translation invariant. The skew 

product V on this factor is just UxsSmK, where qg is the image of 4~ under 

H---~ H/K.  By the addition theorem for entropy, 

h ( V, ./C (~ ./R ( K ) ) = h ( V, ./f ) , 

proving that N is not entropy maximal. 

9. Entropy 

We shall use our look into the structure of irreducible solenoidal automor- 

phisms from w to compute their entropy. The geometry developed there makes 

clear the meaning of each of the two terms of the formula (9.1). The entropy of 

such automorphisms was first calculated by Yuzvinskii (special cases were 

calculated earlier by Arov) and forms the central result of his paper [40] on the 

entropy of group endomorphisms. His arguments are algebraic, however, and 

are somewhat different from those here. We will conclude by discussing the set 

of possible values for the entropy of a group automorphism. This set turns out to 

be either a countable subset of [0, ~] or all of [0, ~], depending on the answer to 

an as yet unsettled problem first posed by D. H. Lehmer over forty years ago. 

Let S be an irreducible solenoidal automorphism with matrix C(p), the 

companion matrix of an irreducible monic polynomial p (x) of degree d in Q[x ]. 

Let A be the least positive integer such that Ap(x) has integral coefficients. Let 

p(x)  = lI~(x - )t,). A dash (as in 5'.') attached to an operation indexed by the At 

cancels our previous convention restricting the operation to ImA~ _-> 0. 

TnEORE~ 9.1. With the above notation, the entropy of the irreducible solenoi- 

dal automorphism S is 
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(9.1) h(S) = E '  log [h, [+ logA. 
Ixd>l 

PROOF. Bowen [6] has shown that if S is an automorphism of a compact 

metric group, B(e) is the ball of radius e about the identity, and D,,(e,S) 
denotes f"l 7, =o S-kB (e), then 

(9.2) h (S) = lim limsup - 1 log/z (D. (e, S)). 

Using the notation of w we can choose a sequence of e 's  tending to zero such 

that B (e) = C ~ (H_,, n Hq) where C = C" ~ ((~f~j,1 CA) is a mapping box of 

small diameter as in w We assume that C is small enough so that if t and u are 

distinct elements of the finite subgroup rru(S-~H), then WH(C)+ t and ~ru(C)+ 

u are disjoint. It follows that 

B(e) n S-'B(e) = (C  n S-'C)(~(H_m n Hq n S-'H_., n S-'H,) 

= (C CI S- 'C)(~(H-m-,  n H~), 

and by induction that 

(9.3) D , ( e , S ) =  k N ~0 S--kB(~)=( ~ N ~0 SI'C)~(HImI. nH~)[ 

To calculate the measure of D,  (e, S), first note that on C ~ H the measure tz 

is the product of the restriction of Lebesgue measure ~o to C with Haar measure 

/xH on H. We therefore must only evaluate the measure of each term on the right 

side of (9.3) and multiply the answers together. 

Since S -1 multiplies distances on W~ by [h {-1, we have S-kC" C C', and for 

[ X l > l ,  

Hence 

s 

By the independence result of Lemma 5.2, we have 

IxH(H-m-,)IxH(Hq). To calculate the first term, note that 

r e + n - - 1  

/~H(H-..-. n Hq) = 

(9.4) IHIH-.-.I-'= I--I IH-,/H-,-,I-'. 

For ] => 0 we have 
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IS- 'HIH ,-11 = IS- 'H/H-,  I" I t t  j /U ,-11, 

while, by Lemma 5.2, 

I S-'H/H-,-, I = I S-'H/S-'-'H f3 S- 'HI .  I S-'H/H-, I. 

Comparison gives 

IH ~/H j_II=IH/H_~I (1">-_0). 

Now the dual of H/H_~ is (A + TA)/A, which by definition of A is precisely the 

cyclic group {jTd3~ + A: 0 =< j < A} of order A. Hence I H/H_~ I = A. Thus by using 

(9.4) we find that 

/ z u ( n _ , . _ .  f3 H q ) =  t z . ( H . ) a  . . . .  . 

Hence 

- l l o g l x ( D . ( e , S ) ) =  ~ '  loglA,[+ n + mlog A + 0 ( 1 ) ,  
n [,~,l>l n \ n /  

and letting n--~ oo in (9.1) gives the result. 
We remark that, as noted by Yuzvinskii, the decomposition of solenoidal 

automorphisms into skew products with irreducible ones, together with the 

addition theorem for entropy, show that the calculation of entropy in Theorem 

9.1 is valid for an arbitrary solenoidal automorphism. 

Finally, we wish to investigate the possible values for the entropy of a group 

automorphism. The following result shows that for a group automorphism there 

is a "maximal" subgroup on which the automorphism is ergodic and which 

contains all of the entropy. 

THEOREM 9.2. Let S be an automorphism of the compact abelian group G, and 

T be the dual automorphism of F. Let Po = 0, P~ = {'y E F: Tky - V = 0 for some 
k ~  0}, and define the increasing sequence of T-invariant subgroups P, of F 
inductively by P,+~ = {1/E F: Tk3, - 3/E P, for some k ~0}. Let P = No P, and H 
be the annihilator of P. Then S~ is ergodic, and S~m is the inverse limit of zero 

entropy automorphisms, and so also has zero entropy. 

REMARK. Since SH is ergodic, by Theorem 8.1 it follows that A/(H) is 

entropy maximal. This means that A/(H) is exactly the Pinsker algebra of S. A 

slight variant of the proof below shows that ~t (H)  is also the Pinsker algebra for 

any affine map g --~ Sg + go, where go is a fixed but arbitrary element of G. The 

fact that the Pinsker algebra of an affine transformation is an "algebraic" factor 

was first proved for general compact groups by Conze [9]. 

PROOF. If Tky -- y E P,, then y E P.+I C P, so T is aperiodic on F/P, the dual 

of H. Hence S,  is ergodic. 
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Let H,  be the annihilator of P,. The G / H  is the inverse limit of the G/H, .  

Since the dual of (G/Hn+O/(G/H.)  is P.§ every element of which is periodic 

under T, an easy argument shows that the entropy S on (G/H.+I) / (G/H. )  is zero. 

The addition theorem for entropy used inductively then gives h (S~m.)= 0 for 

every n, and continuity of entropy under increasing limits yields h ( S o m ) =  O. 

Thus in searching for the possible entropies of group automorphisms, it is 

enough to consider the ergodic ones. The proof in w concerning ergodic 

automorphisms of totally disconnected groups shows that they always have a 

group shift as a factor, hence have entropy =>log2. Our evaluation of the 

entropy of a solenoidal automorphism shows that it is bounded below by 

log A => log 2 unless A = 1, i.e. unless it is a toral automorphism. Thus the only 

possibilities for ergodic group automorphisms with small entropy are those of a 

torus. This leads directly to the following. 

LEHMER'S PROBLEM. If p (X) = 1J, (x - L)  is a monic polynomial with integral 

coefficients and constant term -+ 1, can Er~,l>~loglA~ t he arbitrarily small? 

Lehmer asked this question over forty years ago [16], and the answer is still 

unknown. In the same paper he found the smallest value known to date, namely 

log 1.176280821, which corresponds to the polynomial 

p ( x ) =  x~~ x 9 -  x 7 -  x 6 -  x 5 -  x 4 -  x 3+ x + 1. 

C. L. Siegel [32] showed that if just one of the L is on or outside the unit circle 

(that is, this root is a Pisot-Vijayaraghavan number), then the logarithm of the 

positive root of x 3 - x -  1 (about logl.324) is the smallest possible. P. E. 

Blanksby and H. L. Montgomery [4] have proved that for polynomials of degree 
d, 

( ' t  ~ log lA, l~ log  1-t 52dlogd " 
Ixd>l 

If the answer to Lehmer's problem is "yes", so that there are ergodic toral 

automorphisms with arbitrarily small entropy, then clearly by taking direct 

products of possibly a countable number of these, any positive entropy for an 

automorphism of T ~ can be achieved. Conversely, we showed in a previous 

paper [18] that the existence of an automorphism of T ~ with finite positive 

entropy implies that there are toral automorphisms of arbitrarily small entropy. 

If, however, the answer to Lehmer's problem is "no", then from the proof in 

w for building up a general ergodic group automorphism from skew products 

with solenoids and group shifts it follows from the addition formula that the set 
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of possible values for the entropy of such an automorphism is only countable. 

Thus we have established our last result. 

THEOREM 9.3. The set of possible values for the entropy of a group automor- 
phism is either a countable subset of [0, oo] or all of [0, ~], depending on the answer 
to Lehmer' s problem. Also, the group T ~ either has no au,r)morphisms o[ finite 
positive entropy, or automorphisms o[ every finite positive entropy, again depending 

on the answer to Lehmer's problem. 

Appendix: Relative ergodic theory with infinite entropy 

We have made essential use in this paper of the Relative Factor and Relative 

Monotone Theorems. Thouvenot 's proofs of these results in [36] apply only to 

factors with finite entropy, since he deals only with factors generated by a finite 

partition. We indicate here how these results and their proofs can be carried over 

to factors with infinite entropy. Briefly, using the fact that every factor of an 

ergodic map has a countable generator, conditioning factors with infinite entropy 

are handled by using a countable instead of a finite generator, replacing 

certaining entropy statements that then become indeterminate by well-defined 

relative entropy statements, and using a relative version of the 

Shannon-McMillan theorem. Factors of infinite entropy that are finitely deter- 

mined (i.e. Bernoulli) relative to a conditioning factor (of possibly infinite 

entropy) are then handled just as in the absolute case. 

We assume that the reader is familiar with Thouvenot's paper [36], and 

Ornstein's treatment of infinite entropy [27, Part I, w For ease of comparison, 

we use Thouvenot 's notation, although it is different from that employed 

previously here. The only departure from this is our use of h instead of E to 

denote entropy. Thus if P is a partition, d(P) denotes the distribution of P, 

d(P, P') and ] P -  P'[ are the distributional and partition distances between P 

and P',  and h (T, P) is the entropy of T on P. 

If T is a map of X, P a finite partition of X, and H a countable partition of X 

that generates a factor W = V~_~ T~H, define the conditional entropy of T on P 

rood W to be 

h (T ,P /W)=  h(P I ~/ T- 'Pv  W). 
1 

The entropy of T rood W is 

h (T/W) = sup h (7, P/W), 
P 

where the supremum is over all finite partitions of X. 
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Let P be finite and H be countable. Then P is called H-conditionally finitely 
determined if for every e > 0 there is a 8 > 0 and an integer n such that if T is an 

ergodic map of .~ and there are partitions /5 and H of ,,~ such that for 

= VT~ T'_Q, we have 

and 

(,) I h (T, P/~)  - h (T, P/~)I < 3, 

then there is a space Z, and for every positive integer p sequences {H~}o p, {P~}o p, 

{/5~}0P of partitions of Z such that 

and 

IPi-P,l<e (O<=i<=p). 

This definition coincides with Thouvenot 's for finite H, the only difference 

being that we have replaced the possibly indeterminate expression 

Ih(P v H, T ) -  h(P v H, T)I by (*). 

When phrasing conditions in terms of relative entropies, the only additional 

result required is a relative Shannon-McMillan theorem, which we will now state 

and sketch a proof of. If P = {PI ," ' ,Pk} is a partition of X, and M is a 

subalgebra, the conditional information of P given M is the function 

k 

I(PIM ) = ~ ( -  log E(Xp , I M))Xe,, 
i = 1  

where E (Xe, ] M) is the conditional expectation of the characteristic function of P~ 

with respect to M. Then one has 

fx I(P ~/, T-iPv ~)dv .  

The most convenient form of the result we want is the following. 

RELATIVE SHANNON-MCMILLAN THEOREM. Let P be a finite partition and H be 
a countablepartition of X, The an ergodic map of X, and ~f = VT| T~H. Then 
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in L'(X). 

PROOF. 

as 

1 1  T'P I T'H -~ h (T, P/W) 
n o 

This follows as in the standard proof (see [30]) by writing the left side 

i n , ( ,  
n k~=o TkI P I V TiP v Ti l l  , 

k - k  

noticing that the martingale convergence theorem together with an integrable 

dominating function for conditional entropies (lemma 2.1 of [30]) show that 

( '  ) I PI V T 'Pv  ~/T'H - - , I (T ,P/W)  
- k  - r  

in LI(X) as k, r, s--~ oo, and invoking the L 1 ergodic theorem. 

Using this result together with the appropriate changes, Thouvenot's results 

and proofs go through for countable H. For example, his relative Sinai theorem 

(Proposition 2) takes the following form. 

PROPOSITION 2. Let T be an ergodic map of X and H a countable partition of X 

generating the factor W. Suppose that h (T/W) < o% and let I be a finite probability 

distribution whose entropy is h ( T/W). Then given e > 0, there is a ~ > 0 such that 

if P' is a partition of X with d ( P', I) < ~ and 0 < h ( T / W ) - h ( T, P / W ) < 3, then 

there is a partition P of X such that I P - P ' [ < e ,  d (P)=I ,  {T'P: i E Z }  is 
independent, and V ~_| T~P 3_ W. 

Thus the Factor and Monotone Theorems extend the case when the condition- 

ing factor W has infinite entropy. We now discuss the case of an infinite entropy 

factor being finitely determined mod W. 

If ~r is a factor of T, we say ~r is an increasing limit of W-conditionally finitely 

determined factors if there is an increasing sequence of factors ~r with 

h(T, ,~r oo and each ,ft, is W-conditionally finitely determined. By using 

the relative Sinai theorem (Proposition 2) together with the fact that a partition 

that generates a Bernoulli complement of relative full entropy can be modified 

by an arbitrarily small amount to yield a relative Bernoulli generator (proposi- 

tion 3 of [36]), one shows that ,ff is the increasing limit of W-conditionally finitely 

determined factors if and only if ~r is Bernoulli mod W, the Bernoulli 

complement having, of course, entropy h (T, ~r This practically finishes the 

proof of the Relative Monotone Theorem for infinite entropy. Suppose the 

factors ~r increase to sr and that each sO. is Bernoulli mod W. Since sr is 

generated by a countable partition, we can assume that each ~r is generated 
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mod ~ by a finite partition, that is, sO, v ~ = VT= T'P.v ~g for a finite P,. A 
sequence of applications of propositions 2 and 3 of [36], as in the absolute case, 

shows that N is Bernoulli complemented in M. 
Finally, suppose that a factor .ff is Bernoulli mod Y(, and that ~3 is a 

r of ~/. First note that by the Relative Monotone Theorem, we can 
assume that ~ is generated mod N by a finite partition P. If h (T, s / IN)  < ~, this 
is proposition 4 of [36]. If h(T, sg/N)=% there is a sequence ~4n,,~t with 
h(T, ~ , / N ) <  ~ and J .  Bernoulli mod N. There are ~,-measurable partitions 

P~ such that I P n - P I ~  0. By the Relative Factor Theorem for finite entropy, 
each Pn is N-conditionally finitely determined. Now the relative tl distance 
dH(P, P.) --~ 0, and the relative d limit of the ~-conditionally finitely determined 
partitions is again ~(-conditionally finitely determined (proposition 7 of [36]). 
Thus M is Bernoulli mod N, completing the proof of the general Relative Factor 

Theorem. 
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